아리마(ARIMA) > 로짓분석

본문 바로가기
서울논문컨설팅 / 무료상담 010-2556-8816
신뢰할수 있는 서울대 박사님들이 함께합니다. seoulpaper@daum.net, 02-715-6259


Home > 통계 > 계량경제학
로짓분석

아리마(ARIMA)


https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average 

 

In statistics and econometrics, and in particular in time series analysis, an autoregressive integrated moving average (ARIMA) model is a generalization of an autoregressive moving average (ARMA) model. Both of these models are fitted to time series data either to better understand the data or to predict future points in the series (forecasting). ARIMA models are applied in some cases where data show evidence of non-stationarity, where an initial differencing step (corresponding to the "integrated" part of the model) can be applied one or more times to eliminate the non-stationarity.[1]

The AR part of ARIMA indicates that the evolving variable of interest is regressed on its own lagged (i.e., prior) values. The MA part indicates that the regression error is actually a linear combination of error terms whose values occurred contemporaneously and at various times in the past. The I (for "integrated") indicates that the data values have been replaced with the difference between their values and the previous values (and this differencing process may have been performed more than once). The purpose of each of these features is to make the model fit the data as well as possible.

Non-seasonal ARIMA models are generally denoted ARIMA(p,d,q) where parameters pd, and q are non-negative integers, p is the order (number of time lags) of the autoregressive modeld is the degree of differencing (the number of times the data have had past values subtracted), and q is the order of the moving-average model. Seasonal ARIMA models are usually denoted ARIMA(p,d,q)(P,D,Q)m, where m refers to the number of periods in each season, and the uppercase P,D,Q refer to the autoregressive, differencing, and moving average terms for the seasonal part of the ARIMA model.[2][3]

When two out of the three terms are zeros, the model may be referred to based on the non-zero parameter, dropping "AR", "I" or "MA" from the acronym describing the model. For example, ARIMA (1,0,0) is AR(1), ARIMA(0,1,0) is I(1), and ARIMA(0,0,1) is MA(1).

ARIMA models can be estimated following the Box–Jenkins approach. 

번호 제목 글쓴이 날짜 조회 수
열람중 아리마(ARIMA) 서울논문 03-23 1053

대표:이광조ㅣ사업자등록번호: 643-09-02202ㅣ대표전화: 02-715-6259ㅣ서울시 용산구 효창원로 188